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OF TWO— AND THREF-DIMENSIONAT. SHAPES
AT HYPERSONIC SPEEDS

By H. Reess Ivey, E. Bernasrd Klunker,
end Edwerd N. Bowen

SUMMARY

A method is developed for calculatlng the pressures on aserodynamic
shepes at-very hlgh supersonlc spseds In dense air with the ratio of
specific heats equal to 1. The method is applicable “to any body of
revolution at zero angle of attack and to any two—-dlmensional profile.
The ree'u_'l:bs of the present paper are compared with previous work of .
von Kérmén and Epstein on this problem and the differences explained.

Some aerodynamic characteristlcs of several .shapes are calculated,
and the 1ift and drag coefficients are .shown to be depemndent upon the
thickness ratio, thickness distribution, and angle of attack.

INTRODUCTION

The possibility of constructing alrplenes and missiles capsble of
travelling at extremely high supersonic speeds 1s of ever increasing
Importance. Reference 1, for instance, shows that Mach numbers of the
order of 30 or 40 are necessary for obtaining very long ranges with
rockets. The largest part of such flight paths wlll probably be et very
high altitudes. The aercdynamics of Flight at these altitudes has been
treated by Ssnger and Tsien in references 2 and 3. The part of the
£light in dense alr (that is, in & fluid which msy be considered a con—
“tinuum) is also of jm_portance since the surface temperatures asnd air
loads may reach very high values. The problem of serodynamic heating
hae been investigated in reference 4. It is the purpose of the present
paper to investigate the alr loads encountéred.

‘Busemann has done much of the original work in developing a theory for
hypersonic flows, however his work on this subject is not generally known
An this country. After the present paper had been completed, Dr. Busemann
made availsble to the authors a copy of his originsl work (reference 5).
The -method developed in the preeen‘t papsr is in substantiel agreement
with thet refsrence. Von Ka.rman in his Volta Congress address of 1935
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(reference 6), referred to Busemann's theory but in applying the method
imposed physically lmpossible conditions on the flow. Another theory
has been presented by Epstein (refersnce 7); however, since he neglected
the pressure relief due to centrifugal force, his method is applicable
only to wedges and cones.
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SYMBOLS

drag coefficient based on unit chord or maximum cross section
1ift coefficlent—based on unit chord

drag

istance from nose to maximum cross sectio%)

fineness ratio D
Maximim thilckness

function

1ift

mass

Mach number

pressure cosfficient

statlc pressure

dynamlc pressure .

radlus of body of revolution

radius of curvature

thickness ratio - -
free—stream air veloclty

cocrdinats axes

engle of attack

angle between surface and free—stream directfbp

ratio of specific heats

density

»
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e ghock-wave angle

¢ angle between surface and x—exis
Subscripts:
K free stream; due to form

a,b ghead of and behind shock. wé.ve
1,2 points of zero pressure coefflclent
c due to centrifugel force

1 end polnt of any surfece element
1 lower surface

L due to 1lift

max maxlmmm

N normal

8 dwé to shock

T tangential; total due to pressure
u upper surface

METHOD OF ANALYSIS

In order to calculaete the pressures on bodles at hypersonic spsads
1t is necessary to determine the position of ths nose shock wave. TFirst
consider two equations from the theory of shock wavss. The relation
betwuwen the density ratio across a shock wave and the Mach number normal
to the shock is

Po____7+1 .
Pe 21 y-1
MN2 .

the relation between density retlo and the shock-wave angle 6 and
deflection angle B 1is <

fp tan 6

P, tan (6 — B)
§
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If My 1s very large —gE- can be meglected and the following Very

useful approximation for high Mach number flow is obtained:

For ¥y =1

and for ¥ = 1.k -

56

=
Pg

Since 6 1s not generally equal to 900 (tan 6 £ =), for 7 =1

6=p : (1a)
and for 7 = 1.4t and slender bodles

6 = 1.28 (1p)

Thesse relations may bs applied only to combinations of free-—stream
Mach numbers and surface angles which result in very large Mach numbers
normal to the shock (surface). At the limit M = «» all surface angles
may be considered. ' h

The shock equations have besn dzveloped on the assumption of an
irreversible adiabatic process (no heat transfer sxcept that occurring
within the shock wave 1tself). Epstein (refersnce 7) points out that
the compression at very high Mach numbers results In extremely high
temperaturss which in turn cause large heat-lossos due to radiation and
conduction. These héat losses limit the temperaturs rise to a valus much
lower than that debermined by the adisbatlc law. A bettsr approximation
to the shock equations at hypersonic speeds mey posslbly be obtalned by
use of-the assumption that 7 = 1 in the preceding equations. Equa—
tions (1} show that the results are not critically affected by the value
chosen for 7; hence, for simpliclty, the calculations in this paper will
be based on the relation 7 = 1. '

Equations (1) indicats that at very high supersonic Mach numbers
the shock wavs follows the surfece. - Since the flow is supsrgonlic the
air ahead of the shock wave is not affected by the body, and hence the

-
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fleld of disturbed flow srcund the body is limited to a thin layer behind
the shock which has been called the hypersonic boundary leysr. The
veloclty in this layer mey be determined from the shock equations.

From the following figure it is apparent that the mass flow (per
unit area) through the shock wave 1s

p’B.Ua.N = prbN , (2}

Figure 1.~ Velaocltles near a shock wave.

Since gé--a>o it follows that
b o

Therefors U'-bN willl be considered negligible relative to Ua'N'

Equeting momentum befores end after the shock in a tangsntisel
direction glves

(QaUaN)Ua;in = (p‘bUbN)UbT (3)
As determined from £igure 1, equations (1}, gz), and (3) the tangential
veloclty behind the shock (along the surface) is

UbT = UéT = Uy cos 8 = Uy cos B
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AL very high Mach numbers with 7 = 1 the reglon of disturbed flow
is confined to an infinitesimsl layer between the surface and the shock
wave. Slnce the cross section of this disturbed layer ls very small and
the density is very large, the acceleration in the direction of flow is
negligible. Hence the assumption ls made that the spsed of a given mass
of the fluld remains constant along the surface at the value U cos B.
This assumption ie the seme as that made by Busemaenn and von Ka.rman A
sketch of the veloclties over a surface is given in figure 2.

co® e

To o cos B sin By

Uo cos B cos By

Airfoll surface

Flgure 2.— Velocltles over a surface.
The drag of the body is found from the rate of change of the
momentum of the alr in the stream directlon. The air mess per unlt tims

entering an elemental area of shock for a body of revolution at zero
angle of ettack is

2rrpgoUy dr
end the change in velocity in the stream direction from the time the
elemental mass enters the shock a‘b B- until 1t leaves the surface being
considered at By 1is
Uy — Uy cos B cos By

The drag 1s then

r
= 1l : :
D= /o \,Eff_?},rq(qo- - U, ﬁ,os- B cos Bl) dr _ “ (%)

RS
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vhere cos B 1s a known functlon of .r, and P corresponis to the
surface angle at the polnt 1rj; where the flow diverges from the surface.
The locetion of r) will be determined later in the analysis. Equation (k)
differs from that glven by von Kérmén inasmuch as he assumes that the

flow leaves the surface In the free—stream dirsection (Bl O, »y = rmax)'

This essumption would require surface pressures less than ebsolute zero ,
and is therefore not physically Justified. For a two—dimensional body
the elemental mass is pyU, dy and the drag for one surface becomes

D= fy-l PUo2(1 — cos B cos By) dy (3)
o ‘

For a cone B remains constant at the same value as PBy. Then the
drag of a cone at zero angle of attack simplifigs to

Tmax - .
D = 2n jp porsz(l - cosEBl) ar L>-2)
Yo
= ﬂrmaxgpoUbesingﬁl ' (6)
or _
Cp = 2 sinB) . (7)

Equation (6) is identicel with Epstein's result (reference 7). Since
Epsteln neglected the effect of the pressure drop due to surface
curvature, his method would be expected to be in agreement with the
present work only for stralght—slde bodles.

The pressure coefflcient behind a shock wavs le frequently glven as

2 sin;ﬁ,sin 8 (8)

P = =
cos (6 — B)

Equations (1) and (8) combine to glve the pressurs coefficient behind a-
ghock et hypersonic speeds

:P = 2 sin®B (9)
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A comparison of equations (7) and (9) indicates that;Ffor ¥ = 1,
two— or three—dlimensional bodiss that hawve no surface curvature in the
stream direction have the same pressure on the surface as behind ths
leading shock. When the flow 18 curved in the’ stream direction, the
difference in pressure from the shock wave to the surface equals the
centrifugal force due to ths curvature of the flow. The pressure coeffi-—
clent behind ths shock dépends on the surface slope, gnd the pressurs
relisf-due 1o curvature depends on the local alr mess, veloclty, and
radius of curvature¥Y The maximm curvature that the flow can have for
a glven shock pressure, mass, end velocity occurs when the pressure on
the alrfoll slde of the flow drops to zero. If a pressure stlll lower
is nseded to turn the flow sufficisently to follow the airfoil or body
surfaece, 1t is physicaelly impossible for the flow to follow the surface
and 1t effectively "separates." For the very high dynamic pressures
encountered at hypersonlc speeds the pressure coefficlent P corresponding
to zero pressure can be consldered as zero, - Tt follows that the limits
of integration =rq and 1 of eyuations (14-) and (5) correspomi to the

points vwhere the surface pressure coefficlents go to zero. Thus, in
order to determine the limits of integration for the drag integral 1t is
necessary to know the local pressure coefficlent.

If in equation (5) the subscripts 1 are replaced by 1 where

the subscript 1 corresponds to the end polnt of any slement, the
expression will glve the drag for the part of the body shead of the

point (xq,y4)

2 71
Dy = pUp (1 —cos B cos By) dy
. o
In terms of drag coefficient based on unit chord

¥i
Cp, =2f (L —cos B cos By) ay (10)
o . 47

The surface pressure coefficient at the point (x3,yy) is then
d'CDi
dys L - T

For x4 £ Xq

. ap vy
- 2q. . By
Py = 2 8ln“gy + 2 sin By Ty /; cos p dy (lla)



RACA TN No. 1613 9
end for xg 2%y - . o
Py =0 (11p)

Similerly, for a three—dimensiomal body of revolution the elememtel
drag coefficlent based on the maximm cross section of the complets body
is

= 16F2 f r{l — cos B cos Bi) ar

and on the surfa.ce

B
83‘21'1 dry
Py = 2 sin®py + £ S::‘ B ﬁi‘_/;ri T ‘cos B dr | | (122)
and for xy 23y
Py =0 (12p)

where the fineness ratio F = e
Maxim.lm thlc]mess

 The value of yy =y (or »; = ) 1s determined by equating the

pressure coefficlent to zero. This is the propsr velue to be used 1in
eveluating the total drag integral. (See equations (4) and (5).) The flow
separates from the surface st the point (xl,yl) and is bounded by a
zero—préssure streemline. Any body within this Zero—pressure region
contributes no drag.

In squations (1la) and (12a) the first term is ‘the pressure coeffi—
cisnt behind the shock and the sscond term is ‘the pressure coefficient due
to centrifugal force.
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. A good approximation to the. surface pressure coefficient for glandsr .
proflles may be obtained in a simple mammer. Iet y = £(x) be th= shaps
of the body or alirfoil then o - '

T

a‘rld' . s oo .+ ot LYt s - BEREIENEER A . S . .oTE e e -".— - .

The pressure coefficlent behind the shock (equation (9)) becomss

are _
ot :
1+ ="
If the veloclty is not changed appreciasbly by the shock (true omly for

slender bodlee or alrfoils) , the pressure drop dues to centrifugal
force is - - - -~ R -T2 T

mU02 ' 2‘-1?’ - .

(Ap)c': R =—§—
or _
P =2%
R

where the raiius. of curvaturse:—-.....: i) ... o % e e o

(s f°)3/2 o=

R =
CEY

The pressure om ths surface. is the 'shdck pi'é§sure plushthe ciangeﬂ a:uhg_“

to centrifugal force: . -
P=DPyg+.Py i ol
12 el L o
- et + 2re

1+ £12 0 (14 £72)3/2
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Since f'2 1is small compared with 1, the pressure coef.Licient on &
slender airfoill may be taken as '

P=o(2'? 4 ££") - ' (13)

For a thres—dimensional body the sir mass over each surface elemsent
is .

poUoﬂz PoT

25rU, 2

By similer reasoning the pressure coefficlient for slend.er, three—
dimensional bodies may be approximeted as

P = 2£'2 4 £F" : (1%)

The 1ift of a body or alrfoll results from the downward momentum
imparted to the alr stream. The same conslderations used in determining
the drag from the horlzontal momentum apply to the calcula:bion of 1ift
from the verticael momentum. The 1ift for the upper surfece of & two—
dimensional airfoil is then of the form

: T
L= -poU'oesin B1 f 1 cos B dy : (15)

o]

where ¥y i_‘s the point where the surface pressure becomes negliglible.
APPLICATION OF THEORY

Tift and drag of a flat plate.— Equation (9) can be used as the
basis for calculeting the 1ift of stralght—surface airfolls. The 1lift.
coefflcient of a flat plate at a small angle of attack cen be written as

Since the suctlon pressures aere negligible in comparison wilth the
pressure rises

o = 202 ~ 0 = 20?

ot A
de
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and
CD = CLco = 2q3

Lift and drag of wedge airfoil.~ The 1ift of a single—wedge airfoll
is easily obtained by the seme method used in the preceding section. For
angles of attack o less than the semi-nose angle

CL = PI —:Pu

oz = 2[(8 + a)? - (8 - a)?]

O, = 8Ba = bta - : (16)
and . .
acy,
From 88 = 4t

The drag coefficient of a single—wedge alrfoll at an angle of
attack o -which 1s 1ess_than the semi-nose angle is ‘

2ftp + )3 + (o —u)3]

i}

483 4 10pa2

This can be broken into a form drag CDo and a drag due to 1ift ODL:

Opy, = 12602 ) : (17)

The combination of squations (16) and (17) gives the following expression
for drag due to 1lift for this airfoil:

3 or®
Opp, = § Ope = 2 4~
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For angles of attack larger than B, the 1ift and drag of the wedgs and
flat plate are the same for the same slopes of the lowsr surfaces.

Lift, dreg, and pressure on a two—dlmensional parabolic—erc airfoll.—
From equaetion (5) the drag coefficient for a symmetrical two—dimensional
alrfoll of unlt chord may be expressed as

1 :
Cp = h.j[ (1 — cos B cos By) dy
o

-

For the paregbolic airfoll deflned dDy y = itx(l —-%9 where t 1s the
thickness ratio, the drag coefflclent becomes

) V1 + £2
= 2bxq(2 = x7) + — |1 — 18)
p Xy )+ VpytTog xl)-ér (

The value of Xy for which the pressure coefficlent is zero is found
to be

X =1-¢ Jz + $2)2/3 -1

Substitution of x; 1in equation (18) gives the following equation for
drag coefficlent:

Cp = %-%—[{1;@-)1/3—1]

or for simplicity of numericel calculatlons it may be exprsssed in a
series as |
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The pressure coefficlent on the surface of the airfoll at any point (xi,yi)
is found from equations (11). Then, for xy < xj,

b oo 1l- V1 + &2

[1 + t2(1 - x4 )2

3/2

and for x4 ;xl

or, approximately,

L
P=t2[3(1—x1)2—1:| +1-;'+—[1+6(1+x1)2—15(1—x1)ﬂ e

The pressure coefficlent found by the approximete method (equation (13})
is, for xy < x4,

P = t2 [3(1 —x )P - 1]

The egreement of the pressure coefficients found by thess two
methods 1ls very good as can be seen in figure 3(a) where the pressure
coefficlents on the surface as well as the pressure behind the shock
are given for a parabolic—erc airfoil of thickmness ratio equal to 0.10.

The 1ift coefficient (based on a unit chord) is found Ffrom
equation (15) to be

4 YQ yl .
Esinﬂef cosﬁdy+251nﬁlf cos B dy

(o] Q

Cg,

¥ p¥L
ESinﬁgf sianx+251:;Blf sin B dx
o o

]
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vhere (x1,y;) and (xp,yp) are the points of flow sepsration on the

upper end lower surfaces, respectively, and B is the angle between ths
airfoll surface and stream direction. Ist @ = 8 —a Ffor the upper
surface and ¢ = B + a for the lower surface whers ¢ ie ths angise
between the alxrfoll surface and the x—axis. Then for small angles

sin(f~a)mf—a

For the symmetrical parabolic alrfoil defined by y = tx(l - 5—) ths 1iFft
coefficient based on & unit chord 1s found to be

Cp, = [1-.2::23 - 3tx22'(t'+ a) + 2xp(t + m)g]

—Ec2x13 - 3tx;2(t — @) + 213 (% - a.)‘e] (19)

The pressurse coeffliclents for the upper and lower surfaces ars found
from equations (11). Setting the pressure coefficlents founi from
equations (11) equel to zero pormits the determination of the vealues
of x; end x,

P t2%.2 = 6txy(t — a) + 2(t - )2
u 1 -1

It
o

3

|
o

P, = 3t%x2 — 6tx,(t + @) + 2(% + &)@ =

The 1ift is then found by substituting these va.lues of x and xp
into equation (19). For a <t

o 23 [(t+a)3_(t—@)3J
L~"™9 + £

or for t Sa st (l—%—‘/—g)
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or for o2t (l'; 3)

Cp = 2 = 36(t + @) + 2(¢ + @)f

The pressure distribution for a temn—percéent~thick parabolic airfoil
1s shown in figure 3(b) for o = 0.05 radian. If o is larger than the
semi-nose angle, the effect of the upper surface on the total 1ift 1is
zero glnce suctlon pressures are neglected.

Drag and pressure on a parabolic body of revolution.— The drag of a
parabolic body of revolution &t zero angle of attack may be detexrmined by
the same method used for the two—dimensional bodlesv -Let the surface be

described by the equation

569

where F 18 the fineness ratio of the body The expression for drag
coefficient 1s then

ry
= 16F° J[ (1 — cos B cos By)r ar
o N .-

which reduces to

e o+ 1
L Y 2, e
0 > 8FH3 (1-x)2  (F° +1) F
o=t -n) e g e - —opte—2 — / ey
L+ g

where x; 1s agein the point of zero pressure coefficient.

The -expression for Cp expanded in a serles is

Cp = -3;3 [1 + 3(1 — %1 )2 ~ 9(1 - xl)24L + 5(1 - x1)5]
- —ALE [3 + 4(1 - xl)2 +18(2 — xl)h‘ - 60(1 — xl)6_+_ 35(1 — xl)8]+

24F



NACA TN No. 1613 17

The surface pressure coefficient found from equation (12) i1s, for xy £x,

[ 1\32 )
P=21l4————— 1~
3x1(2 - x4) 1 ; 32 [
. F_+F—§(l—xi):]
. | J

end, for x;.2 X4,

or as a gerles, for x; S X,

_ 1 _ 6
- 1231(2 - Xijr EE

P [1 - 6(1.— x)% + 50 - xi)l"]

+ b%’: [1 +9(1 - %)% - 4501 - xi)h + 35(1 ~ xi)6]+ (20)

By use of the approximastion given by equation (14) the pressure coefficient
may elso be expressed, for x; S %7, as

P = ? (5xi2 ~ 10x; + )-I-)—-a gi-.55% (21)

The pressure distribution over a perebolic body of revolution of fine—
nsss ratio equal to 10 as determined by equation (20) is plotted in
filgure 4. The value of the pressure distribution as detsrmined by the
epproximate method (equation (21)) is also plotted in figure b4 together
wilth the pressure behind the shock.
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. CONCLUDING REMARKS

A method for calculating the serodynemic characteristicse of two—
and three-dimensional shapes at hypersonlc speeds in dense alr has been
developed. The results. of ths present paper are in substantial agreement
with some earlier work of Busemarm but differ from the results of von Kdrmdn
end Epstein. Von Keymén, in his spplication of Busemann's method, has
assumed that the flow leaves the surface parellel to the free strea.m
This assumption would require surface pressures lsss than ebsolube zero.
Fpateln neglected the pressure relief due to centrlfugal force and thore--
fore his results apply only to bodies wilth zero curvaeture.

The method of the presen‘b paper has been applied to severel simple
ghapes and compered with other celculations. . .

Langliey Memorial Aerocnautical Laboratory
Natlonal Advigory Commlttee for Aercnautics
Langley Field, Ve., Februery 5, 1948

REFERENCES

1. Ivey, H. Reese, Bowen, Edward N., Jr., and Oborny, Lester F.:
Introduction to the Problem of Rocket—~Powered Aircraft Performance.
NACA TN No. 1hOl, 1947.

2. Sénger, Bugen: Gas Kinetics of Very High Flying Speeds. Rep. No. 369,
Douglas Alrcraft Co., Inc., June 5, 1946. (From Gaskinetik sehr
hoher Fluggeschwindigkelten. FB Fr. 972, Deutsche Iuftfahrtforschung

(Braunschweig), May 31, 1938.)

3. Tslen, Hsue—Shen: Superasrodynamics, Mechenics of Rarefled Gases.
Jour. Aero. Sci., vol. 13, no. 12, Dec. 1946, pp. 653~664.

4, Wood, George P.: Celculation of Surface Temperatures in Steady
Supsrsonic Flight. NACA TN No. 111k, 1946,

5. Busemenn, A.: Flissigkelts— und Gasbeweging. Handworterbuch der
Neturwissenschaften, Zweite Auflage (Gustav Fischer, Jwna),
1933, pp. 275-277. oo S )

6. Von Kérman, Th.: The Problem of Resistance in Compressible Flulds.
R. Accad. a'Italla, cl. sci. fis., mat. e nat., vol. XIV, 1936,

pp. 1724, (GALCIT Pub. No. 75, 1936.)

T. Hpstein, Paul S.: On the Alr Resistancse of ProJjactiles. Proc¢. Nat.
Acad. Sci., vol. 17, no. 9, Septi-1931, pp. 532-5u47.



.020 -
! b
on surface (approx. method) <::::::::::::::::::: t
.016 . 1
W\\\ 1 J
Yalld results «—> Invalid results
012 K\\\\\\\\
. NI AN
: N ~®
\\ ol
x3
004 N \\sehm shook
On surface \\*“-“4
o N M——
(] 1 .2 3 g .5 3 o1 .

x, fractions of chord

(a) a = 0 radisn; OCp = 0.00066,

Figure 3.~ Pressurs distribution over parabollc slrfoll.

Thickness ratio, 0.10.

1.0

£TI9T °*ON NI YOVN

6T




05

N )

03

.02

Tm‘-n

™~

J!wr\m-hu.

\.

S

L

.1

.2

3

N

.5 .6
X, fractions of chord

Mgure 3,~ Oopncluded.

(b) X = 0,05 radian; 0 = 0,0125.

o

.8

9

1-0

02

"ON NI, YOVN

€191




€T9T °"ON NI VOVN

|

- B J<e—

0016
\\~ On surface (approx. method)

.012 AN =
\\\\\\\J Valid results | Invalid reuﬁlt-
008 N <
1
Behind shock

. \Onaurj ace \b%

0 cl 02 03 . 05 c6 . -. .T 1.0

x, fractions of chord

Figure 4.~ Pressure distribution over parabolic body of revolution., Fineness ratlo, 10; a =0 radlan;
Cp = 0,0042.

e




